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Solvent Effect on Intramolecular Long-Range Electron-Transfer Reactions between
Porphyrin and Benzoquinone in an Acetonitrile Solution: Molecular Dynamics Calculations
of Reaction Rate Constants
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The reaction mechanism of long-range intramolecular electron transfer between the perpbydnquinone
donor—acceptor pair linked by an organic spacer in acetonitrile solvent is investigated theoretically. The
rate formula is derived on the basis of Fermi’s golden rule for reactions induced by the through space and
through bond type electronic couplings involving the dynamical effects of solvent fluctuation. Molecular
dynamics (MD) calculations are carried out to construct the reaction free energy curves. The reaction rate is
estimated on the basis of the results of MD calculations. It is found that there are important contributions
from the vibrationally induced couplings by the solvent fluctuation. In order to examine the solvent fluctuation
effect, we determine the effective electronic coupling element (ECE) and perform the decomposition analyses.
The important electron pathway in determining the solvent-induced ECE is discussed.

1. Introduction In the present study, we performed MD calculations for the
nphotoinduced electron transfer of the porphyrijuinone system
in acetonitrile solvent. This has received much attention as a
model of photosynthetic systerhisWe develop a reaction model
with the MD calculations based on a realistic molecular model
constructed with the aid of ab initio molecular orbital (MO)
calculations in the previous papé€r.We focus here on the effect
of solvent dynamics on the ECE, which is not taken account of
within the Condon approximation. Since the charge distribu-
K = 2—”[1]TPR|2{ FCWD;} [ (1) tions of t.heR, P, and I states are much differelnt from.one
h another in the present system, the solgelvent interaction

whereTpr is the electronic coupling element (ECE) between energies are considered to be strongly dependent on the solute
R and P and FCWD the FranckCondon weighted density, electronic states. It is therefore expected that the indirect ECE
respectively. [z denotes the thermal average for the reactant is affected by the solvent fluctuatiéi!*?because the magnitude
state. Equation 1 implies that the reaction rate is characterizedof indirect ECE depends on the energy differences between those
by the two factorsTpr and FCWD. Tpgr is mainly attributed states. In order to understand the reaction mechanism involving
to the superexchange or indirect interaction involving the the effect of solvent fluctuation, we calculate the reaction rate
intermediate stated () where the spacer orbitals are occupied beyond the Condon approximation by accommodating the
by the electron being transferred. The other factor FCWD is scheme proposed by Freed et&for nonradiative transition
concerned with the dynamics along reaction coordinates. In processes in the gas phase.

polar medium, the solvation coordinate is adopted as the reaction The effect of solvent on the ECE has been discussed by
coordinate and the free energies Bf and P states are  Marcus and Sutfhand Kuzuetsov and Ulstréhby considering
represented by harmonic functions of the solvation coordinate. the stabilization of reactant, product, and intermediate energy
Using molecular simulation techniques such as molecular |evels appearing in the McConnell-type EEE Although these
dynamics (MD) and Monte Carlo calculations, the mechanism stydies have revealed the significance of solvation, it seems to
of intramolecular electron transfer has been extensively exam-pe difficult to apply these treatments directly to realistic
ined for realistic systems from a microscopic point of v@_\ﬁ/. molecular systems. The present study is aimed to give a
However, many studies have been carried out employing the microscopic description of the reaction process in a realistic

standard formula of the transition-state theory (TST) in the high- system based on the well-defined electronic wave functions.
temperature limit with the Condon approximatién

Long-range intramolecular electron-transfer process betwee
electron donor (D) and acceptor (A) species linked by spacer
(Sp) molecules has been a matter of considerable current
interest! As the electronic coupling between the reactdR} (
and product ) states is weak owing to the long distance
between D and A, the reaction rate of electron transfer is given
by Fermi’s golden rule

In the following section, we provide a brief description of

2 2 the molecular model. In section 3, we derive the rate expression
k= h ITer| WFCWD} (& 2) including the solvent fluctuation effect on the ECE. The results
of MD simulation calculations are presented in section 4.
Section 5 contains the calculations of reaction rate and the
analyses of the reaction mechanism. Concluding remarks are
T Research Fellow of the Japan Society for the Promotion of Science. summarized in section 6.

and the two factorsTpr and FCWD, have been discussed
separately.
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eV, and EE(D) the first excitation energy of porphyrin, 2.01
eV,18 respectively. ESa"°™ represents the electrostatic inter-
action between D and A in the product state, which was
approximated by the Coulomb interaction energy between the
unit point charges located on the centers of the porphyrin and
benzoquinone moieties in the total system. As the result,
ES3"°™ was estimated to be1.10 eV, and the resultart\W°
became 1.18 eV. The gas-phase energies of the intermediate
states were determined so as to reproduce the energy differences
between these states and the product state obtained by the SECI
calculations. The energy differences between the reactant and

®cC
ON intermediate states are in the range of 2:90.5 eV.
&0 We determined 1326 off-diagonal coupling elemériisising
OH the SECI wave functions. The magnitudes of these elements
Figure 1. Geometry of the solute molecule. lie in the range of 0.062.99 eV.
2. Molecular System 3. Theory
We consider the porphyrinquinone compound linked by the 3.1. Rate Expression.The reaction rate is given by Fermi’s

spacer solvated in acetonitrile solvent. The spacer consists ofgolden rule

benzene and decalin rings as shown in Figure 1. The geometry

of solute is determined by the ab initio MO calculations reported 11 po i ip

in ref 10. The electronic Hamiltonian for the solute is given k= p2ZJe dt Tr[exp{ hHRT}TRP eXF{hHPt}TRP
by

(%)

wherer = ik and ! = keT. TAis the temperature witks

Heoute= WP+ Vv (3a) the Boltzmann constantHr andHp are the Hamiltonians of
. the reactant and product states, respectivelgr is the
W= Z|¢, W, | (3b) transition matrix element, ardis the partitioning function of
the reactant state. Using the harmonic bath model to describe
A the fluctuation of solvent, the Hamiltonian is expressed as
V= Z_|¢IWIJ|3§J| (3c) o
; H=K+V+W (6a)
where W represents the diagonal elements of Hamiltonian R= (" lpz((u) (6b)
matrix defined in terms of the solute diabatic electronic states. 2
W is the energy of the diabatic statén the gas phase. The R
off-diagonal element between the diabatic statndJ. V3, V= Z|¢|WUE)§J| (6¢)
represents the electronic coupling responsible for the intramo- =
lecular electron transfer. A
In describing the electronic structures of diabatic states, we W= Z|¢,W\4(X)E)S|| (6d)

employed singly excited configuration interaction (SECI) wave

functions. The reactant and product electronic states werey is the operator of the kinetic energy of bath modetw) is
described by the singly excited configurations fromharbitals the conjugate momentum to the bath coordinete) whose

to thexr* ones in the porphyrin part and to the ones inthe  frequency iso. weyis the cutoff frequency of the bath modes.
quinone part, respectlvely. We defined 50_|nt(_armed|ate statesyy represents the operator of the electronic coupling between
that correspond to the single electron excitations fromsthe 6 giapatic states. Because the diabatic states are stable to the
orbitals of porphyrin to the remaining unoccupied orbitals gjecirostatic field from polar solvent as mentioned in the
including the skeleton™ and benzener* orbitals in the spacer. preceding section, the dependencé/afon the bath variables

We employed the localized orbitals in constructing the SECI ;4o neglected in eq 6¢c. The potential energy of the diabatic
wave functions® These were determined using Boys localiza- giate) Wi(x), is expressed as

tion procedure. For the antibonding orbitals, the valence space

was defined with the use of the natural localized antibonding et 15 5 o

orbitals. It can be shown that the diabatic state functions are W) = [i;" do {iw (X(@) — Ay(w)) } +G  (7a)

stable to the electrostatic field coming from polar solvent.

Unfortunately, the SECI calculations provide only qualitative 0_ oty 1 2,0

electronic energy levels as is well-known. We therefore adjusted G = W? - f+0 d 2% Ai(w) (7b)

the energy difference between the reactant and product states

in the gas phaseAW?°, using the experimental values where\/\/ﬁ is the gas-phase energy. Note that the bath modes
are linearly coupled to the electronic states with the coupling

AW=w° —w’ coefficientsA(w).
P The transition matrix in solution was defined with the
= IP(D) — EA(A) + ES3"°™ —EE(D) (4) Hamiltonian, eq 6a. Choosing the bath coordinatas the
adiabatic parameter, the transition maffixz(X) is given by°

where IP(D) is the ionization potential of tetraethylporphyrin, N
6.20 eVI6 EA(A) the electron affinity of benzoquinone, 1.91 Ter(¥) = [Pp|VIYr()O (8)



Solvent Effect on ET Reactions J. Phys. Chem. A, Vol. 102, No. 19, 1998335

where |yr(X)0is the eigenfunction of Hamiltonian eq 6a for whereAw = wcyd/N. It is noted that the Green function for
the reactant state. Since the energy differences between theeach statéVl is characterized by the solute-solvent coupling
reactant and intermediate diabatic states are much larger tharcoefficientsAu(w;). Becauselpr consists of the 4 terms in
the off-diagonal electronic coupling terms in the present case, eq 9a, the rate constant is expressed as the sum of 10 terms
Tpr(X) is expressed approximately by several lower order terms

in a series of the perturbation expansion whékg(x = AR) is
adopted as the zeroth order Hamiltonfan:

Tor(®) = T(Pll):z +
Jisd [1*5 (@)(X(@) — Ag(w)) +
3 0 y 0
"R oxw) PR 6)(2(a))] 2
T(Pll)a =Ver t VP|G?JVJR (9b)
|, Jeel
Ték(w) = JZ Ve, Gho (A (@) — Ar(@))GiVr (9€)
hZ
Tg?:e(w) = ZE VPIGIOJ GgKa)Z(AK(a)) - AR((U))G&LVLR
2 1,J,K,
(9d)
h2
TSI)Q == Z VPIGE] GSKVKR (%e)
1,J,
A0 1 (9f)

" S alo0G% — W= A0

Ter(X) given by eq 9a consists of four terries. The first term,
TG, is the zeroth-order term which is independent of the bath

4

_k(lﬂ

a,
ot<ﬁ

(12)

wherek,g is the term includingr&, and T4

The analytical expression of each term in eq 12 was obtained
by carrying out the integrations appearing in eq 10. Itis possible
to complete the integrations oveyrandx, analytically because
om(Xas T X, 0) is @ Gaussian function of these variables. The
integration ovet was accomplished by short-time approxima-
tion,28 which gives the semiclassical expression of the reaction
rate. For examplek;is, the semiclassical form df 4, is given

by

1/2
JT

o o M) ks T ()
(AG® + 1)
o Aw) kT ()

= 5ok Toh

1Isc

ex (13)

wherel(w) and are the reorganization energies of the bath
modew and the total bath modes, respectively

variables. The second and third terms correspond to the so-

called Herzberg Teller vibronic and non-BorrOppenheimer
couplings, respectivels? GO given by eq 9f is the electronic
Green function, and/! represents the electronic coupling
between the intermediate states.

Using the Hamiltonian and transition matrix given by egs 6a
and 9a, eq 5 is rewritten ¥s

" dte p['AGt lim [ dx, (@) -

S (@) [ A, (@)

S % (@[ Tor(ap (ke T % 0)] x
[Ter(o) £ (X 72 X5 — £ X5 0)] (10)

11

k= r2z)-

where AGC is the reaction free energy changeG® = G(F’, -
G%. pm(Xa, t; X, 0) is the Green function of the bath modes for
the reactant Nl = R) or product M = P) diabatic state

N Aa)a)i 1/2
%, 0)= [z
ol % 0) rlzmhsinwit) )
iAow;
exp— - { (@) = X,(@)* cot Tt —

(@) — Xp(@;) — 2A(@)) tan llzwit}] (11)

Mo) = 50"Ake(®) (142)
A= [ Aw) (14b)
Apr(w) = Ap(w) — Ag(w) (14c)
ksT'(w) is the effective thermal energy defined by
, 1 1
ks T'(w) = Ehw cothéhwﬁ (15)

In the high-temperature limiiwf < 1, kgT'(w) approaches to
ksT and the classical expressitp . is obtained as
AG’

1T(l) - 12 d-
Kiie= 7 TPk TPR /lka € keT

where the activation energdG* is given by the Marcus
relatior?425

(16)

(AG® + 1)

+_
AG = 4

(17)

The integration ovew was evaluated by a trapezoid formula
with the finite step siz&\w. Hereafter, the harmonic bath part
of the Hamiltonian is expressed by the discretized form, xe.,
= (Aw)"*(w;) and A = (Aw)Y2A|(w)).

The semiclassical and classical expressions of the main terms
in eq 9a are presented in Appendix A.

3.2. Solvent Fluctuation. In evaluating the rate constant
based on the formulae presented in section 3.1 and Appendix
A, the frequency-dependent coupling coefficiefitsli} are
required. Note that the reorganization enetgy deduced from
the coupling coefficients of the reactant and product states as
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seen in eq 14. The coupling coefficient can be formally For the reactant and product states, the coupling strength factors
expressed with the coupling strength factpyand the direction are derived from eq 26 wittsym computed by the MD
unit-vector in the harmonic bath spadg, simulations

Ay = gy e (18) S =30 (=R, P) 27)

In order to calculate the coupling coefficients from the properties \yhere [T indicates the equilibrium ensemble average for the
of solvation obtained by MD simulations, we introduced the statel. In order to calculate the coupling strength factors for
solvation coordinate defined by the potential energy difference the intermediate states, we defined the coordinates given by the
between the reactant and product sté8tesEmploying the  energy differences between the intermediate stagmd the
potential energy functions given by eq 7, the solvation coordi- reactant (product) stateg (se1). By projecting the direction
nates is defined as vectors ofsgy andse; onto the directior§, one can obtain the

= Wiy(x) — W) relation
1 L
= 3 (Ar — Ap)o%, (19) 0 = 54" 4Gk — 96 — ri + tp1) (28)

whereur andup) are the effective masses for the coordinates
sr1 and ;. The effective masses are estimated by the MD
calculations

whereX is the displacement of the bath coordinate from the
minimum energy crossing point,2728i.e.

X=x—x (20)

o . i = KT 0 M=R,P) (29)
Equation 19 is rewritten with the direction vector of the solvation
coordinaté swhose direction coincides with that of the steepest  gnce the coupling strength factagsand the direction vector

descent path at’ % are obtained, the free energy curves along the solvation
i eas coordinates can be constructed. Partitioning the bath coordi-
S=u zﬁxi (21) nates in the Hamiltonian ints and the remaining coordinates
' whose directions are orthogonal3g’-28the free energy curve
kT of the statd, F(s), is expressed as
-2 B
u=0Or —0%p) "= =0 (22) . R

Fi(9) = (5 = Spim)” = G (Sint) + WP (30)

wheregr andgp are the coupling strength factors of the reactant )
and product andindicates the equilibrium thermal average. ~ « is the force constant given by
is regarded as the effective mass for the motion along the

solvation coordinate. Using eqs18, 21, and 22, it can be shown K= (Spirp — smmR)f1 = 1/21171

that the direction vectors of coupling coefficients in the reactant

and product states coincide wigh = uQ? (31)
tr=C =5 (23) whereQ is the effective frequency determined by

In the present case, the energy levels of the intermediate states Y]
are much higher than those of the reactant and product states Q=vy(Eo 3 (32)
so that the intermediate states can be treated as virtual states. ) )
Thus the fluctuation of the bath alo&gontributes dominantly ~ Noted that of the reactant, product, and intermediate states
to the vibrationally induced couplings. We therefore imposed are the same sy is derived fromg, using eq 26.G>*"(snin)
the assumption that the direction vectors of the coupling IS the stabilization energy due to the solvatiorsat Smin as
coefficients in the intermediate states are the same as those ofi€fined by the second term in the right-hand side of eq 7b and
R andP. As the result, the coupling coefficients f&, P, is rewritten as follows
and 1 are given by

1
e GCMs.. ) =S —w?A2
A“ = gw; 23 (24) (Smml) ZZ i
As easily seen, the components of the direction vegtare 1 SOIR2
given by the Fourier components of the velocity autocorrelation = To(Sint = %) (332)
function of the solvation coordinate
M= —AW (33Db)
keT _
[s(yl= 725‘2 coset) (25) The relation
The coupling strength factorg are related to the minimum Fs™ =W (34)

positions of the free energy curves alongsn, as

olv

indicates that the free energy of each state=al coincides

_ ~12—
Smin = — U Y20 29| + V\& - V\fp)w (26) with the energy in the gas phase.
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Figure 2. Comparison of dipole moments obtained by the MO Figure 3. Free energy curves along the solvation coordinate. Solid
calculations (QM) and the RESP method. Symbilsl, and< indicate and dashed curves are the free energies of the reactant and product
the dipole moments of the reactant, product, and intermediate states states, respectively, obtained by eq 30. SymKals-, andO indicate
respectively. the free energies evaluated by eqs 36 and 37 with 0.0, 0.5, and

1.0, respectively.
4. Molecular Dynamics Calculation .

expressed by eq 30. Using the calculated values gk and

4.1. Potential Functions. The solute and solvent molecules  sminy, We constructed the reactant and product free energy curves

were treated as rigid bodies. The sotus®lvent and solvent as in Figure 3. These free energy curves were compared with
solvent interactions were described by pair potential functions those derived from the probability densitiessof The equilib-
between the interaction sites. For the solute, the interactionrium MD calculations were carried out with the Hamiltonian
sites were assigned to all the constituent atoms while the three-including a window parametex?®
site model was employed for acetonitrile. The pair potential is
given as the sum of Coulombic _and 12-6 Lennard-Jones (LJ) HMD — TMD a(\/\f\,fD _ \/\/'\40) + \MF/{ID (35)
functions. We used the potential parameters developed by
Jorgensen et &P for the solvent acetonitrile. The effective S .
cha%ges on the interaction sites for the diabatic states of thewhereTMD andVVMMD are the kinetic energy and the pot_ent|al
solute molecule were determined by the restrained eIectrostaticemargy_Of theM state employed in the MD calculat|_ons,
potential (RESP) method. In Figure 2, the dipole moments rgspectlvely. The free energy curve with the parametes
for the diabatic states evaluated with the RESP effective chargesg'Ven by
are compared with those directly obtained by the ab initio MO

calculations. The dipole moments for each diabatic state are F(s, o) = —kgT In P(s, o)) + C(o0) (36)
well-reproduced by the RESP effective charges. It is noteworthy
that the dipole moments distribute widely in the range 680 where P(s, o) is the probability density of and C(a) is a

au. We used the LJ parameters of AMBER#r the solute constant. Note that there is the relation betw&és, o) and
atoms, which were the same for all the diabatic states. In F(s,0) as

constructing the solutesolvent LJ functions, we took the

geometric and arithmetic means for the energy and length F(s, o) — F(s, 0)= —as (37)
parameters, respectively, as usual.

Since the present molecular model involves many parameters Figure 3 also includes the free energy curves derived from
including the electronic coupling elements and potential pa- F(s, o) with the relation of eq 37 foo = 0, /5, and 1. As is
rameters, it is inadequate to list them in this article. These easily seen, both free energi€s(s) andF(s, a), are in good
parameters are available from the authors upon request. agreement with each other, indicating the validity of the

4.2. Computational Details. We carried out MD calcula-  assumption of linear response to describe the fluctuation of
tions for one solute and 2019 solvent molecules. The simulation solvent.
box length was set to 56.3 A. The long-range Coulombic  The reorganization energyand exothermicity-AG° were
interactions between solvensolvent and solutesolvent were calculated to be 60.2 and 24.5 kcal/mol, respectively. It is
computed by the Ewald sum method and the reaction field with noteworthy that the reaction is endothermic in the gas phase as
potential tapering, respectively. We employed the leap frog shown by eq 4, and the solvation makes the reaction exothermic.
algorithm for the integration of the equations of motion. The The activation barrier heigltG* of 5.3 kcal/mol was estimated
equilibrium MD runs of 40 ps following after the cooling and by eq 17.
equilibration runs of 15 ps were performed with the time step  4.3.2. Coupling CoefficientAs shown in eq 24, the coupling
of 0.5 fs. Good energy conservation was achieved; the standardcoefficientsA, consist of the direction vect® and the cou-
deviation from the average total energy was #.A.0~2 kcal/ pling strength factog,. The components of solvation coordi-
mol. Temperature control algorithms were not applied. The nate,sz, were computed by the relation of eq 25 with the
average temperature was 297 K, and the standard deviation waselocity autocorrelation functions of. In Figure 4, the
3 K components derived from the MD simulations for the reactant

4.3. Results of MD Calculation. 4.3.1. Free Energy  and product states are displayed. The distributions of compo-
Curves of R and P. The free energy curves of the reactant nents forR and P are similar to each other. It is roughly
and product states aloisgvere obtained by the MD calculations  characterized by a peak centered at about 100'cwhich is
for each state. If we employ the harmonic bath model in consistent with the experimental findings of the far-infrared
describing the fluctuation of solvent, the free energy curves are absorption spectrurit.
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Figure 4. Components of the direction vectdrcomputed by eq 25
with the velocity correlation functions o obtained by the MD
calculations for the reactant (solid line) and product (dashed line) states.
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Figure 5. Free energy curves(s) defined by eq 30 (solid lines) and
stabilization energyG*°(s) by eq 33a (dashed line). Symbais O,
and < indicate the minimum free energids(smin), for the reactant,
product, and intermediate states, respectively. The force comshzot
minimum positionssmin are evaluated with the direction vec®and
coupling strength factorg, (see section 4.3).

TABLE 1: Effective Frequency (cm™)

R P
Q 49.8 56.2
Q 57.6 58.4

We calculated the effective frequen€y by two different
relations, eq 32 and

Q' = \/[FUBs0

The resultant frequencies f&t andP are summarized in Table
1, where it is found that the frequencies f@randP are very
close to each other and are almost independent of the definitions
egs 32 and 38. These results imply that the harmonic bath
model is a good approximation to describe the fluctuation of
the solvation coordinate.

The coupling strength factors for the reactant and product
statesgr andgp, were derived fronsming @andsminp USING €q

(38)

Hayashi and Kato

TABLE 2: Reaction Rate (s™)

Kap IKos/KI Kap IKos/KI

Ksc 5.37x 10P Kiasc —2.70x 10t <0.001
ke 5.16x 1P Kic —2.63x 10t <0.001
Ksd/Ke 1.05 kiasdKiac 1.03

Ki1sc 3.40x 1> 0.633  Kkiyasc 3.07x 1% 0.001
Ki1c 3.27x 1P 0.634 kiac 3.01x 1 0.001
kiisdkiic  1.04 KiasdKiac 1.02

Ka2sc 1.75x 10° 0.326  kaosc 2.13x 10¢ 0.040
Ki2¢ 1.68x 10° 0.325 kazc 2.04x 10¢ 0.040
klZSL/klZC 1.04 kZZSL/kZZC 1.04

These benzeneg* orbitals were diabatized by diagonalizing the
dipole operator along th€, axis of the partial system defined
by excluding the dimethylporphyrin part from the total systém.
One of these intermediate states is described by the electron
excitation to ther* orbital having b symmetryK;(Smin) ~ 50
kcal/mol) and the other two are by the excitation to the a
symmetryz* orbitals (Fi(Smini) ~ 130 kcal/mol), respectively.
Although the former has lower energy, the electronic coupling
with the product states is small because #tieorbital of the
benzoquinone included in the product state has a symmetry.
The intermediate states with)(snini) in the range of 156200
kcal/mol include the €H o* antibonding orbitals. Those with
Fi(smin) = 250—300 kcal/mol correspond to the excitations to
the C-C o* orbitals except for the benzene and benzoquinone
skeletono* orbitals. These skeleton -©C ¢* orbitals are
involved in the states with(Smin) > 300 kcal/mol.

5. Reaction Rate

The reaction rate of intramolecular electron transfer was
evaluated using the electronic coupling elements between the
diabatic states represented By and G and the coupling
coefficients between the electronic states and the bath coordi-
natesA, (see egs 1217 and Appendix A). We used the results
of MO and MD calculations for these gquantities as presented
in sections 2 and 4.3.2, respectively. The temperature was set
to be T = 297 K. The cutoff value of frequencyyc,, was
chosen to be 400 crhand that of the number of solvent bath
modes to be 200, respectively. Although the solvation coor-
dinate vecto8& is slightly different for the reactant and product
states as shown in Figure 4, both the vectors gave essentially
the same rate constant. Therefore we only present the results
with the use of reactant-state solvation coordinate vector.

As is shown in eq Qaﬂég is regarded as the zeroth-order
term of the perturbation expansion dpgr. At first, we
estimated the lower order terms lofincluding TS, i.e., ks,
kio, kiz, and kys, with both the semiclassical and classical
expressions. The resultant reaction rates are summarized in
Table 2. Becaus&;z and ki4 are much smaller thaks1 and
ki2, we omitted to evaluate the higher order terms including
TG, and T8:. The second-order term foFe), ko, is also
given in Table 2. The total reaction rategandk; are defined
by the sum ofk,s appearing in Table 2.

26. For the intermediate states, on the other hand, the coupling The calculateds.is 5.37 x 10 s~1, which is about 1/100 of

strength factorsy;, were first computed with the use of eqs 28
and 29 and were used to estimatg, with eq 26.

Figure 5 shows the free energy curves of reactant, product,
and intermediate states,(s), obtained by eq 30. As mentioned

the experimental value observed in DMF solutfonThe
calculated activation energyG*, 5.36 kcal/mol, seems to be
higher than the experimental one by about 2 kcal/mol. One of
the reasons of this discrepancy may be that we neglected the

in section 3.2, the free energy curves for all the states have theeffect of electronic reorganization of solute and solvent mol-

solv

same force constart s, was evaluated to be 27 kcal/mol.
The calculated values &y distribute widely in the range of
s= —40-110 kcal/mol. We found three low lying intermediate
states in which ther* orbitals in the benzene part are occupied.

ecules particularly in the product state, and the exothermicity
of reaction is estimated to be too small. Considering many
approximations introduced in constructing the molecular model,
which includes a large solute molecule and a number of solvent
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molecules, it would be unavoidable to cause the error of 2 kcal/
mol for the activation barrier height.

It is found that the semiclassical rate constiagis slightly
larger than the classical onk,, only by 5% indicating that
vibrational quantum effects attributed to the effective thermal
energieskgT' (w) are not important in the present case. This
comes from the result that the components of the solvation
coordinate vectoB mainly distribute in the lower frequency
range than the thermal energyT = 206 cnT! as shown in
Figure 4. For simplicity, we hereafter only discuss the classical
rate constant.

As seen in Table 2, the magnitude of reaction kais mainly
determined by the termigq kize, andkzy, and the contributions
of kizc and ki4c are negligibly small in the present case. We
therefore analyzed the rate constant by approximating it as

Ke = Kiget Koo T Koae (39)
The characters of the other ternksz. and ks, are discussed
in Appendix B.
The components of rate constant are formally written by

1 x 12 AGY

kon/ic = EAaﬁ(m) ex;{— m (40)

whereAys are given by
Ay = T(Pll)?T(PpR (41a)
A= zolz(wi)-rgl)?-r(gaii (41b)

|

Ny = Zazz(wiv wj)-rgzii-rg?ij (41c)

]

T is regarded as the transition matrix element correspond-
ing to the HerzbergTeller vibronic coupling defined by eq
A3. In Figure 6, the coefficientsix(w;) and oxx(wi, w;) are
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Figure 6. Coefficientsoygs. (a) Solid, dotted, and dashed lines indicate
o1 wi), o13(wi), andow4(w;), respectively. (b (wi, w;) atw; = 0 and
200 cnr'.

A1z and Ay, are thus represented by

A= zﬁél)?i—gl)?i

(44a)

1. ke T
Ny = z Z[Tg%u -r(le)?j + zTﬁlf)F'QiTgiéj (44b)

1

shown as the functions of bath frequencies. As seen in Figurehere

6a,012 is almost independent of;. We showedr(wi, w;) at

the fixed values ofy;, 0 and 200 cm?, in Figure 6b, where it

is found thato,; is almost constant for the frequency change.
Considering these results, the coefficieats and o2, may

be represented by

o) == %Th“) (42a)
O w;, ) = 2(%)2 h® (42b)

whereh® andh® are the expansion coefficients Bfw) defined
by eq A6 with respect t@

E(w) = EQO)(1+ hPw + h®Pw?) (43a)
_ (AG’+ A
ht = — kT (43b)
1 A2 (AG® + M)h|?
h = é{ T 2kgT kT ] (43c)

AG’ + 1

:I‘-(F%)R‘ 2 Z VPIG%ZJiGgKVKR (45)
1,JKel

with 4 defined by eq (A4). Although\1; is independent of
the bath index, all the remaining terms include the components
of reorganization energyi;. In the present case, the sum of
24

2, =257,

= Shinl ~ SminR (46)

is the same order of magnitude of energy difference between
the reactant and intermediate statesat sminr. Thus the
magnitude of factor 2,G)1,G) appearing inA1, and Az, is
comparable th?K. This explains the significant contributions
from kioc andkooc as seen in Table 2.

Neglecting the second term of the right-hand side of eq 44b,
which is considered to be small compared with the first term
due to2ksT < A, the rate constant is written in the similar form
of eq 2 as
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_Ly o m | ] AG
whereVpr is the effective ECE given by
\_/PR = T(F}})? + T(PZI)? (482)
_ AG’ + 4 N
T(PZI)Q == T ‘Z VPlG?J/‘{JGgKVKR (48b)
1,JKel

The effective ECE was estimated to be 5.06 émEquation
47 provides the rate constant of 5.%81C s, which well
reproduces the calculated value in Table 2, 5160° s™1.

TCL in the effective ECE is attributed to the electronic

interaction between the zeroth-order electronic wave functions.

It is noteworthy thaﬂ'g,é is similar to the electronic coupling

in the gas phase, becausgnr, the position on the solvation
coordinate corresponding to= Ag, is close to%""’ (see eq
34). The magnitude of}), was calculated to be 4.02 cth

In order to find out important electron propagation path-
ways, we carried out the decomposition analysis using the
method previously developéd. T8), consists of the direct
term T8, and the indirect terTl), .. as given by eq 9b

T(F}I)R = T(Pll)?dir + T(F}I):{indir (49a)
o=V (49b)
PRdir PR
F%l)?indirz Z VP|G|OJVJR (49c¢)
1,.Jel

T, represents the through space type interaction betieen
and P, and 'I'(Pl)Rinclir is of the through bond type indirect

interaction. We further decomposetiyq, into several
terms to distinguish the electron-transfer pathways. For this

Hayashi and Kato

TABLE 3: Transition Matrix Element TO., (cm™)

T(Fl’)R -I—(F:’Lz?indir[)q/-l—(F:’L)Rindir
)
s o
Fr)Rdir > 88
PRindir .
-I-(IBRindir[”* (Ben)] 2.26 0.785
Torinarlo* (DMe)] —0.05 —0.017
PRindirl 0% ] —0.19 —0.066
T0rinanl7* (Ben),o* (DMe)] —0.09 ~0.031
-r(l?lzRindir[g* (DMe), 0*] —0.14 —0.049
T(FI>)Rindir[”* (Ben),o*] 117 0.406
O gl (Ben),o*(DMe), 0*] ~ —0.08 -0.028
TABLE 4: Transition Matrix Element T*Pl,)a (cm™)
Thk TBRIXY TER
L 1.04
Tok[*(Ben)] 0.50 0.481
ToR[o*(DMe)] 0.00 0.000
Toklo*] 0.14 0.135
T8 [7*(Ben), o*(DMe)] —-0.02 —0.019
T [0*(DMe), 0] —-0.03 —0.029
Toklm*(Ben), 0*] 0.48 0.462
Tek[*(Ben), 0*(DMe), o*] ~0.03 ~0.029

on the bath coordinates. We performed the decomposition
analysis toT&. and the results are shown in Table 4. The
dominant terms are found to ﬁ'@R[ﬂ*(Ben)], 0.50 cnT?, and

T, [7*(Ben), 0*], 0.48 cn'L. It is noted that the relatively
large contribution ofT&.[z*(Ben), o*] is due to the solvent
effect of the intermediate states includioy orbitals, because
the reorganization energies of these statgsre large in polar
solvent, 46-60 kcal/mol.

6. Concluding Remarks

In the present study, we investigated theoretically the reaction

purpose, the intermediate states in eq 49c were classified intomechanism of long-range intramolecular electron-transfer pro-

three subsets. The first consists of the states whererthe
orbitals of benzene partf(Ben)) are occupied by the electron

cess between the porphyrin and benzoquinone deawweeptor
pair mediated by an organic spacer in acetonitrile solvent. We

to be transferred. In the second subset, the single electronfocus on the effects of the solvent fluctuation on the reaction

occupies theo* orbitals of the dimethyl groups attached
to porphyrin ¢*(DME)). The third one is constituted by the
intermediate states where the remaining-@ and C-H
o* orbitals are occupiedoft). Tik.q Was thus expressed as
the sum of the contributions from the terms&y. .i[Al,
T8 ilA, B], and TS, .. [A, B, C], representing that the

process.

The reaction rate expression including the dependence of the
ECE on the solvent fluctuation was derived on the basis of
Fermi’s golden rule using the harmonic bath model. The rate
constant was constituted by the standard TST constant and the
terms involving the effects of solvent fluctuation.

electron propagates through the intermediate subspace A, Aand We constructed a realistic molecular model by the ab initio
B, and A, B, and C, respectively. The explicit definitions and MO calculations and performed the MD calculations to examine

the methods of evaluation were presented in ref 10. the effects of solvent fluctuation. The free energy curves of

Table 3 summarizes the results of decomposition analysis. the reactant, product, and intermediate states along the solvation
D of 1.14 cnt® was found to be less than half of Ccoordinate were determined. It was found that the free energy

PRdir

Q) i of 2.88 cntL. The main contribution toT&Y, 4 iS
TG, [7*(Ben)], 2.26 cn1l, and the second important one is
T8 i [7*(Ben), 0*], 1.17 e, The 7* states of the ben-

zene part are therefore considered to play an important role in

determining ToL;qi- It is noted thatT8s,[0*] is much
smaller thanTok, .. [7*(Ben), 0*], although both come from
the electron pathways involving the states in thfesubset.
TE. in the effective ECE, estimated to be 1.04 dm
represents the Herzberdeller vibronic coupling, which is

curves of the reactant and product are well-represented by
harmonic ones and large solvation energy in the product state
makes the reaction process exothermic, though the process is
endothermic in the gas phase.

Using the quantities derived from the MO and MD calcula-
tions, the rate constant was estimated. It was demonstrated that
the solvent effect on the ECE plays an important role in
determining the rate constant. We further carried out the
decomposition analyses for the ECEs. The characteristic
electron pathways of the solvent-induced ECE were different

originated from the dependence of the transition matrix element from those of the ECE in the gas phase.
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In the present study, we neglected the intramolecular con-
formational changes and vibrations. Although the effect of
fluctuation of solute geometry may be important in determining
the magnitude of the ECE elemén334it is computationally
too demanding to obtain the potential energies and electronic
coupling elements as the functions of intramolecular coordinate.
For the purpose, efficient methods would be required to
construct the intramolecular functions. We will extend the
present model to include the intramolecular dynamics in a future
study.
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Appendix A

The rate expressions &2, ki3, ks, and kx2 in eq 10 are

presented. The classical expressions are not included here.
These are easily derived from the semiclassical ones by replacing

kT, —
(I) k12:
I(12$c= ZklZSci (Al)
1250 1T(F:l-|)? FZ)EQI(ZIAJKBT') ” les(,(wi) (A2)
where
T@;& =-2 JZ VPIGI%ZJiGS)KVKR (A3)
1,J,
=, 97 0r
= ligp _— (Ad)
Lized) = EO) - (1+ki) E(,) - (%—%) E(-o)
T (Ap)
0 2
E(w) = exp[— % (A6)
(II) kis:
Kigse= zkl:%sd (A7)
/
k13sd = %ﬁél)?ﬁsgi(%)l ’ LlBsc(wi) (A8)
-I—(S)F'zi =2 VPIGEJGSKZKiG&LVLRhwi (A8)
1,3KTel
Lysuf)) = 2@ E(0) + (E + 1) E(w,) +

(@

1
e 5) E(-w) (A9)
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(iil) ka:
Kissc= Iz Kiase (A10)
Kass = $TER S’F;.(ZZKBT)W Lusdw)  (AL1)
T~ T (12
Lyasl) =
R
i R
(%‘—%) E(—20) (A13)
(V) ko
Kopsc= Zkzzmj (A14)
Kanes = 11*.§R.1*§%;,(z klkkBT,)m Lozl @) (AL5)
Loosd, @) = {E(O) (; ! )E( w) -
(B
- o
(2 S
R

1 keTi 1 KgT;
2 ha) ha)J

Here we analyze the components of rdg: andkis.. The
prefactorA;, defined in eq 40 for those components are given

by

)E( ; +a))} (A16)

Appendix B

Alu = Z O-lu(wi)T(lgl)QT(Pz?:'Qi (Bl)

with eqs A8 and A12. The dependences of the coefficients
in eq B1 onw; are illustrated in Figure 6, showing thats is
linear with respect te; andoi4 is a quadratic function. Using
the expansion ofE(wi), eq 43, those coefficients are ap-
proximated by the lowest order terms

o13(@y) :[ @+ 2kB @ w; (B2)

o{w) = 2h(2)wi2 (B3)
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Note that the dependences@npresented in Figure 6 are well-
expressed by those approximated formulae. As a redult,
for a = 3, 4 are represented by

A=Y ToRToR (B4)
I
- AG®+ 2 1 AG® + 1]?
Toki =1{— - +
22k T 20ksT 22k T
2 VP|G|OJG3KZKiG2LVKR(hwi)2 (B5)
1,JK,Lel
. 1 AG1|?
Tok=—{-———=+
20T | 20kgT

1
ELJ'ZEI VRlGloJG(J)KVKP/Ii(ﬁwi)2 (B6)

It is noteworthy that the magnitude &f;3is much smaller than
that of A1; because the factdf ;GofiwiG) included inAys is
much smaller tharG,OK. A14 is also much smaller thaniis

because4(w) is very small in the main bath frequency region.

These are consistent with the calculated results in Table 2.
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