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The reaction mechanism of long-range intramolecular electron transfer between the porphyrin-benzoquinone
donor-acceptor pair linked by an organic spacer in acetonitrile solvent is investigated theoretically. The
rate formula is derived on the basis of Fermi’s golden rule for reactions induced by the through space and
through bond type electronic couplings involving the dynamical effects of solvent fluctuation. Molecular
dynamics (MD) calculations are carried out to construct the reaction free energy curves. The reaction rate is
estimated on the basis of the results of MD calculations. It is found that there are important contributions
from the vibrationally induced couplings by the solvent fluctuation. In order to examine the solvent fluctuation
effect, we determine the effective electronic coupling element (ECE) and perform the decomposition analyses.
The important electron pathway in determining the solvent-induced ECE is discussed.

1. Introduction

Long-range intramolecular electron-transfer process between
electron donor (D) and acceptor (A) species linked by spacer
(Sp) molecules has been a matter of considerable current
interest.1 As the electronic coupling between the reactant (R)
and product (P) states is weak owing to the long distance
between D and A, the reaction rate of electron transfer is given
by Fermi’s golden rule

whereTPR is the electronic coupling element (ECE) between
R andP and FCWD the Franck-Condon weighted density,
respectively. 〈〉R denotes the thermal average for the reactant
state. Equation 1 implies that the reaction rate is characterized
by the two factorsTPR and FCWD. TPR is mainly attributed
to the superexchange or indirect interaction involving the
intermediate states (I ) where the spacer orbitals are occupied
by the electron being transferred. The other factor FCWD is
concerned with the dynamics along reaction coordinates. In
polar medium, the solvation coordinate is adopted as the reaction
coordinate and the free energies ofR and P states are
represented by harmonic functions of the solvation coordinate.
Using molecular simulation techniques such as molecular
dynamics (MD) and Monte Carlo calculations, the mechanism
of intramolecular electron transfer has been extensively exam-
ined for realistic systems from a microscopic point of view.4-8

However, many studies have been carried out employing the
standard formula of the transition-state theory (TST) in the high-
temperature limit with the Condon approximation2,3

and the two factors,TPR and FCWD, have been discussed
separately.

In the present study, we performed MD calculations for the
photoinduced electron transfer of the porphyrin-quinone system
in acetonitrile solvent. This has received much attention as a
model of photosynthetic systems.9 We develop a reaction model
with the MD calculations based on a realistic molecular model
constructed with the aid of ab initio molecular orbital (MO)
calculations in the previous paper.10 We focus here on the effect
of solvent dynamics on the ECE, which is not taken account of
within the Condon approximation. Since the charge distribu-
tions of theR, P, andI states are much different from one
another in the present system, the solute-solvent interaction
energies are considered to be strongly dependent on the solute
electronic states. It is therefore expected that the indirect ECE
is affected by the solvent fluctuation,2,11,12because the magnitude
of indirect ECE depends on the energy differences between those
states. In order to understand the reaction mechanism involving
the effect of solvent fluctuation, we calculate the reaction rate
beyond the Condon approximation by accommodating the
scheme proposed by Freed et al.13 for nonradiative transition
processes in the gas phase.
The effect of solvent on the ECE has been discussed by

Marcus and Sutin2 and Kuzuetsov and Ulstrap11 by considering
the stabilization of reactant, product, and intermediate energy
levels appearing in the McConnell-type ECE.14 Although these
studies have revealed the significance of solvation, it seems to
be difficult to apply these treatments directly to realistic
molecular systems. The present study is aimed to give a
microscopic description of the reaction process in a realistic
system based on the well-defined electronic wave functions.
In the following section, we provide a brief description of

the molecular model. In section 3, we derive the rate expression
including the solvent fluctuation effect on the ECE. The results
of MD simulation calculations are presented in section 4.
Section 5 contains the calculations of reaction rate and the
analyses of the reaction mechanism. Concluding remarks are
summarized in section 6.† Research Fellow of the Japan Society for the Promotion of Science.
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2. Molecular System

We consider the porphyrin-quinone compound linked by the
spacer solvated in acetonitrile solvent. The spacer consists of
benzene and decalin rings as shown in Figure 1. The geometry
of solute is determined by the ab initio MO calculations reported
in ref 10. The electronic Hamiltonian for the solute is given
by

where Ŵ0 represents the diagonal elements of Hamiltonian
matrix defined in terms of the solute diabatic electronic states.
WI

0 is the energy of the diabatic stateI in the gas phase. The
off-diagonal element between the diabatic stateI and J. VIJ,
represents the electronic coupling responsible for the intramo-
lecular electron transfer.
In describing the electronic structures of diabatic states, we

employed singly excited configuration interaction (SECI) wave
functions. The reactant and product electronic states were
described by the singly excited configurations from theπ orbitals
to theπ* ones in the porphyrin part and to theπ* ones in the
quinone part, respectively. We defined 50 intermediate states
that correspond to the single electron excitations from theπ
orbitals of porphyrin to the remaining unoccupied orbitals
including the skeletonσ* and benzeneπ* orbitals in the spacer.
We employed the localized orbitals in constructing the SECI

wave functions.15 These were determined using Boys localiza-
tion procedure. For the antibonding orbitals, the valence space
was defined with the use of the natural localized antibonding
orbitals. It can be shown that the diabatic state functions are
stable to the electrostatic field coming from polar solvent.
Unfortunately, the SECI calculations provide only qualitative

electronic energy levels as is well-known. We therefore adjusted
the energy difference between the reactant and product states
in the gas phase,∆W0, using the experimental values

where IP(D) is the ionization potential of tetraethylporphyrin,
6.20 eV,l6 EA(A) the electron affinity of benzoquinone, 1.91

eV,l7 and EE(D) the first excitation energy of porphyrin, 2.01
eV,18 respectively. EDA

Coulomb represents the electrostatic inter-
action between D and A in the product state, which was
approximated by the Coulomb interaction energy between the
unit point charges located on the centers of the porphyrin and
benzoquinone moieties in the total system. As the result,
EDA
Coulombwas estimated to be-1.10 eV, and the resultant∆W0

became 1.18 eV. The gas-phase energies of the intermediate
states were determined so as to reproduce the energy differences
between these states and the product state obtained by the SECI
calculations. The energy differences between the reactant and
intermediate states are in the range of 2.94-20.5 eV.
We determined 1326 off-diagonal coupling elementsVI] using

the SECI wave functions. The magnitudes of these elements
lie in the range of 0.00-2.99 eV.

3. Theory

3.1. Rate Expression.The reaction rate is given by Fermi’s
golden rule

whereτ ) ipâ andâ-1 ) kBT. T is the temperature withkB
the Boltzmann constant.ĤR and ĤP are the Hamiltonians of
the reactant and product states, respectively.TPR is the
transition matrix element, andZ is the partitioning function of
the reactant state. Using the harmonic bath model to describe
the fluctuation of solvent, the Hamiltonian is expressed as19

K̂ is the operator of the kinetic energy of bath modes.p(ω) is
the conjugate momentum to the bath coordinatex(ω) whose
frequency isω. ωcut is the cutoff frequency of the bath modes.
V̂ represents the operator of the electronic coupling between
the diabatic states. Because the diabatic states are stable to the
electrostatic field from polar solvent as mentioned in the
preceding section, the dependence ofVIJ on the bath variables
was neglected in eq 6c. The potential energy of the diabatic
stateI, WI(x), is expressed as

whereWI
0 is the gas-phase energy. Note that the bath modes

are linearly coupled to the electronic states with the coupling
coefficients∆I(ω).
The transition matrix in solution was defined with the

Hamiltonian, eq 6a. Choosing the bath coordinatex as the
adiabatic parameter, the transition matrixTPR(x) is given by20

Figure 1. Geometry of the solute molecule.

Ĥsolute) Ŵ0 + V̂ (3a)

Ŵ0 ) ∑
I

|φI〉WI
0〈φI| (3b)

V̂) ∑
I,J

|φI〉VIJ〈φJ| (3c)

∆W0t Wp
0 - WR

0

) IP(D)- EA(A) + EDA
Coulomb-EE(D) (4)

k) 1

p2
1
Z∫∞-∞

dt Tr[exp{- i
p
ĤRτ}TRP exp{ ipĤPt}TRP] (5)

Ĥ ) K̂+ V̂+ Ŵ (6a)

K̂ )∫+0ωcutdω 1
2
p2(ω) (6b)

V̂) ∑
I*J
|φI〉VIJ〈φJ| (6c)

Ŵ) ∑
I

|φI〉WI(x)〈φI| (6d)

WI(x) )∫+0ωcut dω {12ω2(x(ω) - ∆I(ω))
2} + GI

0 (7a)

GI
0 ) WI

0 -∫+0ωcut dω 1
2

ω2∆1
2(ω) (7b)

TPR(x) ) 〈φP|V̂|ψR(x)〉 (8)
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where |ψR(x)〉 is the eigenfunction of Hamiltonian eq 6a for
the reactant state. Since the energy differences between the
reactant and intermediate diabatic states are much larger than
the off-diagonal electronic coupling terms in the present case,
TPR(x) is expressed approximately by several lower order terms
in a series of the perturbation expansion whereWR(x ) ∆R) is
adopted as the zeroth order Hamiltonian:21

TPR(x) given by eq 9a consists of four terries. The first term,
TPR
(1) , is the zeroth-order term which is independent of the bath
variables. The second and third terms correspond to the so-
called Herzberg-Teller vibronic and non-Born-Oppenheimer
couplings, respectively.22 Ĝ0 given by eq 9f is the electronic
Green function, andV̂I represents the electronic coupling
between the intermediate states.
Using the Hamiltonian and transition matrix given by eqs 6a

and 9a, eq 5 is rewritten as13

where∆G0 is the reaction free energy change,∆G0 ) GP
0 -

GR
0 . FM(xa, t; xb, 0) is the Green function of the bath modes for

the reactant (M ) R) or product (M ) P) diabatic state

where∆ω ) ωcut/N. It is noted that the Green function for
each stateM is characterized by the solute-solvent coupling
coefficients∆M(ωi). BecauseTPR consists of the 4 terms in
eq 9a, the rate constant is expressed as the sum of 10 terms

wherekRâ is the term includingTPR
(R) andTPR

(â) .
The analytical expression of each term in eq 12 was obtained

by carrying out the integrations appearing in eq 10. It is possible
to complete the integrations overxa andxb analytically because
FM(xa, t; xb, 0) is a Gaussian function of these variables. The
integration overt was accomplished by short-time approxima-
tion,23 which gives the semiclassical expression of the reaction
rate. For example,k11sc, the semiclassical form ofk11, is given
by

whereλ(ω) andλ are the reorganization energies of the bath
modeω and the total bath modes, respectively

kBT′(ω) is the effective thermal energy defined by

In the high-temperature limit,pωâ , 1, kBT′(ω) approaches to
kBT and the classical expressionk11c is obtained as

where the activation energy∆Gq is given by the Marcus
relation24,25

The integration overω was evaluated by a trapezoid formula
with the finite step size∆ω. Hereafter, the harmonic bath part
of the Hamiltonian is expressed by the discretized form, i.e.,xi
) (∆ω)1/2x(ωi) and∆Ii ) (∆ω)1/2∆I(ωi).
The semiclassical and classical expressions of the main terms

in eq 9a are presented in Appendix A.
3.2. Solvent Fluctuation. In evaluating the rate constant

based on the formulae presented in section 3.1 and Appendix
A, the frequency-dependent coupling coefficients{∆Ii} are
required. Note that the reorganization energyλ is deduced from
the coupling coefficients of the reactant and product states as

TPR(x) ) TPR
(1) +

∫+0ωcutdω {TPR
(2) (ω)(x(ω) - ∆R(ω)) +

TPR
(3) δ

δx(ω)
+ TPR

(4) δ2

δx2(ω)} (9a)

TPR
(1) ) VPR + ∑

I,J∈eI
VPIGIJ

0VJR (9b)

TPR
(2) (ω) ) - ∑

I,J,K∈I

VPIGIJ
0ω2(∆J(ω) - ∆R(ω))GJK

0 VKR (9c)

TPR
(3) (ω) )

p2

2
∑

I,J,K,L∈I

VPIGIJ
0 GJK

0 ω2(∆K(ω) - ∆R(ω))GKL
0 VLR

(9d)

TPR
(4) )

p2

2
∑

I,J,K,L∈I

VPIGIJ
0 GJK

0 VKR (9e)

Ĝ0 ) 1

∑I∈I|φI〉[GR
0 - WI(x) ∆R)]〈φI|〉 - V̂I

(9f)

k) 1

p2
1
Z∫-∞

∞
dt exp[i∆G0t

p ] limNf∞
∫-∞

∞
dxa (ω1) ‚‚‚ ×

∫-∞

∞
dxa (ωN)∫-∞

∞
dxb (ω1) ‚‚‚ ×

∫-∞

∞
dxb (ωN)[TPR(xa)FR

(xa, τ; xb, 0)]×
[TPR(xb) F

P
(xa, τ; xb, - t; xa, 0)] (10)

FM(xa, t; xb, 0)) ∏
i

N ( ∆ωωi

2πip sinωit
)1/2×

exp[i∆ωωi

4p
{(xa(ωi) - xb(ωi))

2 cot 1/2ωit -

(xa(ωi) - xb(ωi) - 2∆M(ωi))
2 tan1/2ωit}] (11)

k) ∑
Râ)1
Reâ

4

kRâ (12)

k1lsc) 1
p
TPR
(1) TPR

(1) ( π

∫+0ωcut dω λ(ω) kBT′(ω))1/2×
exp[-

(∆G0 + λ)2

4∫+0ωcutdω λ(ω) kBT′(ω)] (13)

λ(ω) ) 1
2

ω2∆PR
2 (ω) (14a)

λ )∫+0ωcutdω λ(ω) (14b)

∆PR(ω) ) ∆P(ω) - ∆R(ω) (14c)

kBT′(ω) ) 1
2

pω coth
1
2

pωâ (15)

k11c) 1
p
TPR
(1) TPR

(1) ( π
λkbT)1/2 exp[- ∆Gq

kBT] (16)

∆Gq )
(∆G0 + λ)2

4λ
(17)
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seen in eq 14. The coupling coefficient can be formally
expressed with the coupling strength factor,gI, and the direction
unit-vector in the harmonic bath space,c̃I

In order to calculate the coupling coefficients from the properties
of solvation obtained by MD simulations, we introduced the
solvation coordinate defined by the potential energy difference
between the reactant and product states.26 Employing the
potential energy functions given by eq 7, the solvation coordi-
nates is defined as

where x̃ is the displacement of the bath coordinate from the
minimum energy crossing pointxq,27,28 i.e.

Equation 19 is rewritten with the direction vector of the solvation
coordinate s˜, whose direction coincides with that of the steepest
descent path at xq

wheregR andgP are the coupling strength factors of the reactant
and product and〈〉 indicates the equilibrium thermal average.µ
is regarded as the effective mass for the motion along the
solvation coordinate. Using eqs18, 21, and 22, it can be shown
that the direction vectors of coupling coefficients in the reactant
and product states coincide withs̃

In the present case, the energy levels of the intermediate states
are much higher than those of the reactant and product states
so that the intermediate states can be treated as virtual states.
Thus the fluctuation of the bath alongs̃contributes dominantly
to the vibrationally induced couplings. We therefore imposed
the assumption that the direction vectors of the coupling
coefficients in the intermediate states are the same as those of
R andP. As the result, the coupling coefficients forR, P,
andI are given by

As easily seen, the components of the direction vectors̃ are
given by the Fourier components of the velocity autocorrelation
function of the solvation coordinate

The coupling strength factorsgI are related to the minimum
positions of the free energy curves along s,sminI, as

For the reactant and product states, the coupling strength factors
are derived from eq 26 withsminI computed by the MD
simulations

where 〈〉I indicates the equilibrium ensemble average for the
stateI. In order to calculate the coupling strength factors for
the intermediate states, we defined the coordinates given by the
energy differences between the intermediate stateI and the
reactant (product) state,sRI (sPI). By projecting the direction
vectors ofsRI andsPI onto the directions̃, one can obtain the
relation

whereµRI andµPI are the effective masses for the coordinates
sRI and sPI. The effective masses are estimated by the MD
calculations

Once the coupling strength factorsgI and the direction vector
s̃ are obtained, the free energy curves along the solvation
coordinates can be constructed. Partitioning the bath coordi-
nates in the Hamiltonian intos and the remaining coordinates
whose directions are orthogonal tos̃,27,28 the free energy curve
of the stateI, FI(s), is expressed as

κ is the force constant given by

whereΩ is the effective frequency determined by

Noted thatκ of the reactant, product, and intermediate states
are the same.sminI is derived fromgI using eq 26.Gsolv(sminI)
is the stabilization energy due to the solvation ats ) sminI as
defined by the second term in the right-hand side of eq 7b and
is rewritten as follows

The relation

indicates that the free energy of each state ats) s0
solv coincides

with the energy in the gas phase.

∆Ii ) gIωi
-2cIi (18)

s) WR(x) - WP(x)

) ∑
i

(∆Ri - ∆Pi)ωi
2x̃i (19)

x̃ ) x - xq (20)

s) µ-1/2∑
i

s̃ix̃i (21)

µ ) (gR - gP)
-2 )

kBT

〈s̆2〉
(22)

c̃R ) c̃P ) s̃ (23)

∆Ii ) gIωi
-2s̃i (24)

〈s̆s̆(t)〉 )
kBT

µ
∑
i

s̃i
2 cos(ωit) (25)

sminI ) - µ-1/2Ω-2gI + WR
0 - WP

0 (26)

sminI ) 〈s〉I (I ) R, P) (27)

gI ) 1
2

µ1/2(gR
2 - gP

2 - µRI
-1 + µPI

-1) (28)

µMI ) kTB〈s̆MI
2 〉M

-1 (M ) R, P) (29)

FI(s) ) 1/2κ(s- sminI)
2 - Gsolv(sminI) + WI

0 (30)

κ ) (sminP - sminR)
-1 ) 1/2λ

-1

) µΩ2 (31)

Ω ) x(s̃tω̃-2s̃)-1 (32)

Gsolv(sminI) ) ∑
i

1

2
ωi
2∆Ii

2

) 1/2κ(sminI - s0
solv)2 (33a)

s0
solv ) -∆W0 (33b)

FI(s0
solv) ) WI

0 (34)
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4. Molecular Dynamics Calculation

4.1. Potential Functions. The solute and solvent molecules
were treated as rigid bodies. The solute-solvent and solvent-
solvent interactions were described by pair potential functions
between the interaction sites. For the solute, the interaction
sites were assigned to all the constituent atoms while the three-
site model was employed for acetonitrile. The pair potential is
given as the sum of Coulombic and 12-6 Lennard-Jones (LJ)
functions. We used the potential parameters developed by
Jorgensen et al.29 for the solvent acetonitrile. The effective
charges on the interaction sites for the diabatic states of the
solute molecule were determined by the restrained electrostatic
potential (RESP) method.30 In Figure 2, the dipole moments
for the diabatic states evaluated with the RESP effective charges
are compared with those directly obtained by the ab initio MO
calculations. The dipole moments for each diabatic state are
well-reproduced by the RESP effective charges. It is noteworthy
that the dipole moments distribute widely in the range of 0-30
au. We used the LJ parameters of AMBER431 for the solute
atoms, which were the same for all the diabatic states. In
constructing the solute-solvent LJ functions, we took the
geometric and arithmetic means for the energy and length
parameters, respectively, as usual.
Since the present molecular model involves many parameters

including the electronic coupling elements and potential pa-
rameters, it is inadequate to list them in this article. These
parameters are available from the authors upon request.
4.2. Computational Details. We carried out MD calcula-

tions for one solute and 2019 solvent molecules. The simulation
box length was set to 56.3 Å. The long-range Coulombic
interactions between solvent-solvent and solute-solvent were
computed by the Ewald sum method and the reaction field with
potential tapering, respectively. We employed the leap frog
algorithm for the integration of the equations of motion. The
equilibrium MD runs of 40 ps following after the cooling and
equilibration runs of 15 ps were performed with the time step
of 0.5 fs. Good energy conservation was achieved; the standard
deviation from the average total energy was 4.0× 10-3 kcal/
mol. Temperature control algorithms were not applied. The
average temperature was 297 K, and the standard deviation was
3 K.
4.3. Results of MD Calculation. 4.3.1. Free Energy

CurVes ofR and P. The free energy curves of the reactant
and product states alongswere obtained by the MD calculations
for each state. If we employ the harmonic bath model in
describing the fluctuation of solvent, the free energy curves are

expressed by eq 30. Using the calculated values ofsminR and
sminp,we constructed the reactant and product free energy curves
as in Figure 3. These free energy curves were compared with
those derived from the probability densities ofs. The equilib-
rium MD calculations were carried out with the Hamiltonian
including a window parameterR28

whereTMD andWM
MD are the kinetic energy and the potential

energy of theM state employed in the MD calculations,
respectively. The free energy curve with the parameterR is
given by

whereP(s, R) is the probability density ofs and C(R) is a
constant. Note that there is the relation betweenF(s, R) and
F(s, 0) as

Figure 3 also includes the free energy curves derived from
F(s,R) with the relation of eq 37 forR ) 0, 1/2, and 1. As is
easily seen, both free energies,FM(s) andF(s,R), are in good
agreement with each other, indicating the validity of the
assumption of linear response to describe the fluctuation of
solvent.
The reorganization energyλ and exothermicity-∆G0 were

calculated to be 60.2 and 24.5 kcal/mol, respectively. It is
noteworthy that the reaction is endothermic in the gas phase as
shown by eq 4, and the solvation makes the reaction exothermic.
The activation barrier height∆Gq of 5.3 kcal/mol was estimated
by eq 17.
4.3.2. Coupling Coefficient.As shown in eq 24, the coupling

coefficients∆I consist of the direction vectors̃ and the cou-
pling strength factorgI. The components of solvation coordi-
nate, s̃i

2, were computed by the relation of eq 25 with the
velocity autocorrelation functions ofs. In Figure 4, the
components derived from the MD simulations for the reactant
and product states are displayed. The distributions of compo-
nents forR and P are similar to each other. It is roughly
characterized by a peak centered at about 100 cm-1, which is
consistent with the experimental findings of the far-infrared
absorption spectrum.32

Figure 2. Comparison of dipole moments obtained by the MO
calculations (QM) and the RESP method. Symbols+,0, and] indicate
the dipole moments of the reactant, product, and intermediate states,
respectively.

Figure 3. Free energy curves along the solvation coordinate. Solid
and dashed curves are the free energies of the reactant and product
states, respectively, obtained by eq 30. Symbols], +, and0 indicate
the free energies evaluated by eqs 36 and 37 withR ) 0.0, 0.5, and
1.0, respectively.

HMD ) TMD + R(WP
MD - WR

MD) + WR
MD (35)

F(s, R) ) -kBT ln P(s, R) + C(R) (36)

F(s, R) - F(s, 0)) -Rs (37)
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We calculated the effective frequencyΩ by two different
relations, eq 32 and

The resultant frequencies forR andP are summarized in Table
1, where it is found that the frequencies forR andP are very
close to each other and are almost independent of the definitions,
eqs 32 and 38. These results imply that the harmonic bath
model is a good approximation to describe the fluctuation of
the solvation coordinate.
The coupling strength factors for the reactant and product

states,gR andgP, were derived fromsminR andsminP using eq
26. For the intermediate states, on the other hand, the coupling
strength factors,gI, were first computed with the use of eqs 28
and 29 and were used to estimatesminI with eq 26.
Figure 5 shows the free energy curves of reactant, product,

and intermediate states,FI(s), obtained by eq 30. As mentioned
in section 3.2, the free energy curves for all the states have the
same force constantκ. s0

solv was evaluated to be-27 kcal/mol.
The calculated values ofsminI distribute widely in the range of
s) -40-110 kcal/mol. We found three low lying intermediate
states in which theπ* orbitals in the benzene part are occupied.

These benzeneπ* orbitals were diabatized by diagonalizing the
dipole operator along theC2 axis of the partial system defined
by excluding the dimethylporphyrin part from the total system.10

One of these intermediate states is described by the electron
excitation to theπ* orbital having b symmetry (FI(sminI) ∼ 50
kcal/mol) and the other two are by the excitation to the a
symmetryπ* orbitals (FI(sminI) ∼ 130 kcal/mol), respectively.
Although the former has lower energy, the electronic coupling
with the product states is small because theπ* orbital of the
benzoquinone included in the product state has a symmetry.
The intermediate states withFI(sminI) in the range of 150-200
kcal/mol include the C-H σ* antibonding orbitals. Those with
FI(sminI) ) 250-300 kcal/mol correspond to the excitations to
the C-C σ* orbitals except for the benzene and benzoquinone
skeletonσ* orbitals. These skeleton C-C σ* orbitals are
involved in the states withFI(sminI) > 300 kcal/mol.

5. Reaction Rate

The reaction rate of intramolecular electron transfer was
evaluated using the electronic coupling elements between the
diabatic states represented byV̂ and Ĝ and the coupling
coefficients between the electronic states and the bath coordi-
nates,∆I (see eqs 12-17 and Appendix A). We used the results
of MO and MD calculations for these quantities as presented
in sections 2 and 4.3.2, respectively. The temperature was set
to beT ) 297 K. The cutoff value of frequency,ωcut, was
chosen to be 400 cm-l and that of the number of solvent bath
modes to be 200, respectively. Although the solvation coor-
dinate vectors̃ is slightly different for the reactant and product
states as shown in Figure 4, both the vectors gave essentially
the same rate constant. Therefore we only present the results
with the use of reactant-state solvation coordinate vector.

As is shown in eq 9a,TPR
(1) is regarded as the zeroth-order

term of the perturbation expansion ofTPR. At first, we
estimated the lower order terms ofk including TPR

(1) , i.e., k11,
k12, k13, and k14, with both the semiclassical and classical
expressions. The resultant reaction rates are summarized in
Table 2. Becausek13 and k14 are much smaller thank11 and
k12, we omitted to evaluate the higher order terms including
TPR
(3) and TPR

(4) . The second-order term forTPR
(2) , k22, is also

given in Table 2. The total reaction ratesksc andkc are defined
by the sum ofkRâ appearing in Table 2.
The calculatedksc is 5.37× 105 s-1, which is about 1/100 of

the experimental value observed in DMF solution.9 The
calculated activation energy∆Gq, 5.36 kcal/mol, seems to be
higher than the experimental one by about 2 kcal/mol. One of
the reasons of this discrepancy may be that we neglected the
effect of electronic reorganization of solute and solvent mol-
ecules particularly in the product state, and the exothermicity
of reaction is estimated to be too small. Considering many
approximations introduced in constructing the molecular model,
which includes a large solute molecule and a number of solvent

Figure 4. Components of the direction vectors̃ computed by eq 25
with the velocity correlation functions ofs obtained by the MD
calculations for the reactant (solid line) and product (dashed line) states.

Figure 5. Free energy curvesFI(s) defined by eq 30 (solid lines) and
stabilization energyGsolv(s) by eq 33a (dashed line). Symbols×, 0,
and] indicate the minimum free energies,FI(sminI), for the reactant,
product, and intermediate states, respectively. The force constantκ and
minimum positionssminI are evaluated with the direction vectors̃ and
coupling strength factorsgI (see section 4.3).

TABLE 1: Effective Frequency (cm-l)

R P

Ω 49.8 56.2
Ω 57.6 58.4

Ω′ ) x〈s̆2〉/〈δs2〉 (38)

TABLE 2: Reaction Rate (s-l)

kRâ |kRâ/k| kRâ |kRâ/k|
ksc 5.37× 105 k13sc -2.70× 101 <0.001
kc 5.16× 105 k13c -2.63× 101 <0.001
ksc/kc 1.05 k13sc/k13c 1.03
k11sc 3.40× 105 0.633 k14sc 3.07× 102 0.001
k11c 3.27× 105 0.634 k14c 3.01× 102 0.001
k11sc/k11c 1.04 k14sc/k14c 1.02
k12sc 1.75× 105 0.326 k22sc 2.13× 104 0.040
k12c 1.68× 105 0.325 k22c 2.04× 104 0.040
k12sc/k12c 1.04 k22sc/k22c 1.04
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molecules, it would be unavoidable to cause the error of 2 kcal/
mol for the activation barrier height.
It is found that the semiclassical rate constantksc is slightly

larger than the classical one,kc, only by 5% indicating that
vibrational quantum effects attributed to the effective thermal
energieskBT′(ω) are not important in the present case. This
comes from the result that the components of the solvation
coordinate vectors̃ mainly distribute in the lower frequency
range than the thermal energykBT ) 206 cm-1 as shown in
Figure 4. For simplicity, we hereafter only discuss the classical
rate constant.
As seen in Table 2, the magnitude of reaction ratekc is mainly

determined by the termsk11c, k12c, andk22c, and the contributions
of k13c andk14c are negligibly small in the present case. We
therefore analyzed the rate constant by approximating it as

The characters of the other terms,k13c andk14c, are discussed
in Appendix B.
The components of rate constant are formally written by

whereΛRâ are given by

T(2)′PRi is regarded as the transition matrix element correspond-
ing to the Herzberg-Teller vibronic coupling defined by eq
A3. In Figure 6, the coefficientsσ12(ωi) and σ22(ωi, ωi) are
shown as the functions of bath frequencies. As seen in Figure
6a,σ12 is almost independent ofωi. We showedσ22(ωi, ωi) at
the fixed values ofωj, 0 and 200 cm-1, in Figure 6b, where it
is found thatσ22 is almost constant for the frequency change.
Considering these results, the coefficientsσ12 andσ22 may

be represented by

whereh(1) andh(1) are the expansion coefficients ofE(ω) defined
by eq A6 with respect toω

Λ12 andΛ22 are thus represented by

where

with λ̃Ii defined by eq (A4). AlthoughΛ11 is independent of
the bath indexi, all the remaining terms include the components
of reorganization energy,λi. In the present case, the sum of
2λ̃Ii

is the same order of magnitude of energy difference between
the reactant and intermediate state ats ) sminR. Thus the
magnitude of factor 2∑JGIJ

0 λ̃JGJK
0 appearing inΛ12 andΛ22 is

comparable toGIK
0 . This explains the significant contributions

from k12c andk22c as seen in Table 2.
Neglecting the second term of the right-hand side of eq 44b,

which is considered to be small compared with the first term
due to2kBT, λ, the rate constant is written in the similar form
of eq 2 as

Figure 6. CoefficientsσRâ. (a) Solid, dotted, and dashed lines indicate
σ12(ωi), σ13(ωi), andσ14(ωi), respectively. (b)σ22(ωi, ωj) atωj ) 0 and
200 cm-l.

Λ12 ) ∑
i

TPR
(1) T̃PRi

(2) (44a)

Λ22 ) ∑
i,j

1

4[T̃PRi
(2) TPRj

(2) + 2
kBT

λ
T(2)′PRiT

(2)′PRj] (44b)

T̃PRi

(2) ) -
∆G0 + λ

λ
‚ 2 ∑

I,J,K∈I

VPIGIJ
0 λ̃JiGJK

0 VKR (45)

2λ̃I ) 2∑
i

λ̃Ii

) sminI - sminR (46)

kc = k11c+ k12c+ k22c (39)

kRâc ) 1
p

ΛRâ( π
λkBT)1/2 exp[- ∆Gq

kBT] (40)

Λ11 ) TPR
(1) TPR

(1) (41a)

Λ12 ) ∑
i

σ12(ωi)TPR
(1) T(2)′PRi (41b)

Λ22 ) ∑
i,j

σ22(ωi, ωj)T
(2)′PRiT

(2)′PRj (41c)

σ12(ωi) ) -
kBT

2p
h(1) (42a)

σ22(ωi, ωj) ) 2(kBTp )2 h(2) (42b)

E(ω) = E(0)(1+ h(1)ω + h(2)ω2) (43a)

h(1) ) -
(∆G0 + λ)p
2λkBT

(43b)

h(2) ) 1
2{- p2

2λkBT
+ [(∆G0 + λ)p

2λkBT ]2} (43c)
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whereVhPR is the effective ECE given by

The effective ECE was estimated to be 5.06 cm-1. Equation
47 provides the rate constant of 5.18× 105 s-1, which well
reproduces the calculated value in Table 2, 5.16× 105 s-1.
TPR
(1) in the effective ECE is attributed to the electronic

interaction between the zeroth-order electronic wave functions.
It is noteworthy thatTPR

(1) is similar to the electronic coupling
in the gas phase, becausesminR, the position on the solvation
coordinate corresponding tox ) ∆R, is close tos0

solv (see eq
34). The magnitude ofTPR

(1) was calculated to be 4.02 cm-1.
In order to find out important electron propagation path-
ways, we carried out the decomposition analysis using the
method previously developed.l0 TPR

(1) consists of the direct
termTPRdir

(1) and the indirect termTPRindir
(1) as given by eq 9b

TPRdir
(1) represents the through space type interaction betweenR

and P, and TPRindir
(1) is of the through bond type indirect

interaction. We further decomposedTPRindir
(1) into several

terms to distinguish the electron-transfer pathways. For this
purpose, the intermediate states in eq 49c were classified into
three subsets. The first consists of the states where theπ*
orbitals of benzene part (π*(Ben)) are occupied by the electron
to be transferred. In the second subset, the single electron
occupies theσ* orbitals of the dimethyl groups attached
to porphyrin (σ*(DME)). The third one is constituted by the
intermediate states where the remaining C-C and C-H
σ* orbitals are occupied (σ*). TPRindir

(1) was thus expressed as
the sum of the contributions from the terms,TPRindir

(1) [A],
TPRindir
(1) [A, B] , and TPRindir

(1) [A, B, C], representing that the
electron propagates through the intermediate subspace A, A and
B, and A, B, and C, respectively. The explicit definitions and
the methods of evaluation were presented in ref 10.
Table 3 summarizes the results of decomposition analysis.

TPRdir
(1) of 1.14 cm-1 was found to be less than half of
TPRindir
(1) of 2.88 cm-1. The main contribution toTPRindir

(1) is
TPRindir
(1) [π*(Ben)], 2.26 cm-1, and the second important one is
TPRindir
(1) [π*(Ben), σ*], 1.17 cm-1. The π* states of the ben-
zene part are therefore considered to play an important role in
determiningTPRindir

(1) . It is noted thatTPRindir
(1) [σ*] is much

smaller thanTPRindir
(1) [π*(Ben), σ*], although both come from

the electron pathways involving the states in theσ* subset.
ThPR
(2) in the effective ECE, estimated to be 1.04 cm-1,

represents the Herzberg-Teller vibronic coupling, which is
originated from the dependence of the transition matrix element

on the bath coordinates. We performed the decomposition
analysis toThPR

(2) and the results are shown in Table 4. The
dominant terms are found to beThPR

(2) [π*(Ben)], 0.50 cm-1, and
ThPR
(2) [π*(Ben), σ*], 0.48 cm-1. It is noted that the relatively
large contribution ofThPR

(2) [π* (Ben), σ* ] is due to the solvent
effect of the intermediate states includingσ* orbitals, because
the reorganization energies of these states,λ̃I, are large in polar
solvent, 40-60 kcal/mol.

6. Concluding Remarks

In the present study, we investigated theoretically the reaction
mechanism of long-range intramolecular electron-transfer pro-
cess between the porphyrin and benzoquinone donor-acceptor
pair mediated by an organic spacer in acetonitrile solvent. We
focus on the effects of the solvent fluctuation on the reaction
process.
The reaction rate expression including the dependence of the

ECE on the solvent fluctuation was derived on the basis of
Fermi’s golden rule using the harmonic bath model. The rate
constant was constituted by the standard TST constant and the
terms involving the effects of solvent fluctuation.
We constructed a realistic molecular model by the ab initio

MO calculations and performed the MD calculations to examine
the effects of solvent fluctuation. The free energy curves of
the reactant, product, and intermediate states along the solvation
coordinate were determined. It was found that the free energy
curves of the reactant and product are well-represented by
harmonic ones and large solvation energy in the product state
makes the reaction process exothermic, though the process is
endothermic in the gas phase.
Using the quantities derived from the MO and MD calcula-

tions, the rate constant was estimated. It was demonstrated that
the solvent effect on the ECE plays an important role in
determining the rate constant. We further carried out the
decomposition analyses for the ECEs. The characteristic
electron pathways of the solvent-induced ECE were different
from those of the ECE in the gas phase.

kc ) 1
p
|VhPR|2( π

λkBT)1/2 exp[- ∆Gq

kBT] (47)

VhPR ) TPR
(1) + ThPR

(2) (48a)

ThPR
(2) ) -

∆G0 + λ

λ
∑

I,J,K∈I

VPIGIJ
0 λ̃JGJK

0 VKR (48b)

TPR
(1) ) TPRdir

(1) + TPRindir
(1) (49a)

TPRdir
(1) ) VPR (49b)

TPRindir
(1) ) ∑

I,J∈I

VPIGIJ
0VJR (49c)

TABLE 3: Transition Matrix Element TPR
(l) (cm-l)

TPR
(l) TPRindir

(1) [X]/TPRindir
(1)

TPR
(l) 4.02

TPRdir
(l) 1.14

TPRindir
(l) 2.88

TPRindir
(l) [π* (Ben)] 2.26 0.785

TPRindir
(l) [σ* (DMe)] -0.05 -0.017
TPRindir
(l) [σ* ] -0.19 -0.066
TPRindir
(l) [π* (Ben),σ* (DMe)] -0.09 -0.031
TPRindir
(l) [σ* (DMe),σ*] -0.14 -0.049
TPRindir
(l) [π* (Ben),σ* ] 1.17 0.406

TPRindir
(l) [π* (Ben),σ* (DMe),σ* ] -0.08 -0.028

TABLE 4: Transition Matrix Element T̃PR
(1) (cm-l)

T̃PR
(1) T̃PR

(l) [X]/ T̃PR
(1)

T̃PR
(1) 1.04

T̃PR
(1) [π*(Ben)] 0.50 0.481

T̃PR
(1) [σ*(DMe)] 0.00 0.000

T̃PR
(1) [σ*] 0.14 0.135

T̃PR
(1) [π*(Ben),σ*(DMe)] -0.02 -0.019
T̃PR
(1) [σ*(DMe), σ*] -0.03 -0.029
T̃PR
(1) [π*(Ben),σ*] 0.48 0.462

T̃PR
(1) [π*(Ben),σ*(DMe), σ*] -0.03 -0.029
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In the present study, we neglected the intramolecular con-
formational changes and vibrations. Although the effect of
fluctuation of solute geometry may be important in determining
the magnitude of the ECE element,13,33,34it is computationally
too demanding to obtain the potential energies and electronic
coupling elements as the functions of intramolecular coordinate.
For the purpose, efficient methods would be required to
construct the intramolecular functions. We will extend the
present model to include the intramolecular dynamics in a future
study.
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Appendix A

The rate expressions ofkl2, kl3, kl4, and k22 in eq 10 are
presented. The classical expressions are not included here.
These are easily derived from the semiclassical ones by replacing
kBT′i f kBT.
(i) k12:

where

(ii) k13:

(iii) kl4:

(iv) k22:

Appendix B

Here we analyze the components of rate,k13c andk13c. The
prefactorΛ1R defined in eq 40 for those components are given
by

with eqs A8 and A12. The dependences of the coefficientsσ1R
in eq B1 onωi are illustrated in Figure 6, showing thatσ13 is
linear with respect toωi andσ14 is a quadratic function. Using
the expansion ofE(ωi), eq 43, those coefficients are ap-
proximated by the lowest order terms

k12sc) ∑
i

k12sci (A1)

k12sci ) 1
p
TPR
(1) T(2)′PRi( π

∑jλjkBT′j)
1/2
L12sc(ωi) (A2)

T(2)′PRi ) -2 ∑
I,J,K∈I

VPIGIJ
0 λ̃JiGJK

0 VKR (A3)

λ̃Ii ) λi
gI - gR

gP - gR

(A4)

L12sc(ωi) ) E(0)- (12+
kBT′i
pωi

) E(ωi) - (12-
kBT′i
pωi

) E(-ωi)

(A5)

E(ω) ) exp[-
(∆G0 + pω + λ)2

4∑iλikBT′i ] (A6)

k13sc) ∑
i

k13sci (A7)

k13sci ) 1
p
TPR
(1) T(3)′PRi( π

∑jλjkBT′j)
1/2
L13sc(ωi) (A8)

T(3)′PRi ) 2 ∑
I,J,K,L∈I

VPIGIJ
0GJK

0 λ̃KiGKL
0 VLRpωi (A8)

L13sc(ωi) ) -2
kBT′i
pωi

E(0)+ (kBT′i
pωi

+ 1
2) E(ωi) +

(kBT′i
pωi

- 1
2) E(-ωi) (A9)

k14sc) ∑
i

k14sci (A10)

k14sci ) 1
p
TPR
(1) T(4)′PRi( π

∑jλjkBT′j)
1/2
L14sc(ωi) (A11)

T(4)′PRi ) TPR
(4)

λi
p2

(A12)

L14sc(ωi) )

{6 (kBT′i
pωi

)2 - 1
2} E(0)- 2{2 (kBT′i

pωi
)2 +

kBT′i
pωi

} E(ωi) -

2{2 (kBT′i
pωi

)2 -
kBT′i
pωi

} E(-ωi) + (kBT′i
pωi

+ 1
2)2 E(2ωi) +

(kBT′i
pωi

- 1
2)2 E(-2ωi) (A13)

k22sc) ∑
i,j

k22scij (A14)

k22scij ) 1
p
T(2)′PRiT

(2)′PRj( π

∑kλkkBT′k)
1/2
L22sc(ωi, ωj) (A15)

L22sc(ωi, ωj) ) 1
4 {E(0)- (12+

kBT′i
pωi

) E(ωi) -

(12-
kBT′i
pωi

) E(-ωi) - (12+
kBT′j
pωj

) E(ωj) -

(12-
kBT′j
pωj

) E(-ωj) + (12+
kBT′i
pωi

) (12+
kBT′j
pωj

) E(ωi + ωj) +

(12-
kBT′i
pωi

) (12-
kBT′j
pωj

) E(-ωi - ωj) +

(12+
kBT′i
pωi

) (12-
kBT′j
pωj

) E(ωi - ωj) +

(12-
kBT′i
pωi

)(12+
kBT′j
pωj

) E(-ωi + ωj)} (A16)

Λ1R ) ∑
i

σ1R(ωi)TPR
(1) T(2)′PRi (B1)

σ13(ωi) ) [h(1) + 2
kBT

p
h(2)] ωi (B2)

σ14(ωi) ) 2h(2)ωi
2 (B3)
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Note that the dependences onωi presented in Figure 6 are well-
expressed by those approximated formulae. As a result,Λ1R
for R ) 3, 4 are represented by

It is noteworthy that the magnitude ofΛ13 is much smaller than
that ofΛ11 because the factor∑JGIJ

0pωiGJK
0 included inΛ13 is

much smaller thanGIK
0 . Λ14 is also much smaller thanΛ13

becauseσ14(ωi) is very small in the main bath frequency region.
These are consistent with the calculated results in Table 2.
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